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Data integration, or the inclusion of multiple response-variable  
  data sources within a single statistical modeling frame-

work, is a methodological approach that facilitates understand-
ing of complex and interacting processes (Schaub and Abadi 
2011; Michener and Jones 2012). The use of data integration 
(also referred to as integrated modeling, data assimilation, data 
fusion, integrated analysis, inverse modeling, or ensemble esti-
mation) within ecology is rising steadily (Figure 1), reflecting 

advancements in computational resources and dramatic 
increases in the quantity of available data (LaDeau et al. 2017). 
While integrated modeling techniques are revolutionizing how 
analyses are conducted across an array of ecological systems, 
data integration can be particularly advantageous in macrosys-
tems ecology. Macrosystems ecology is the study of ecological 
patterns and processes at broad spatiotemporal scales and their 
interactions with phenomena at other scales (Heffernan et al. 
2014; Soranno et al. 2014; Fei et al. 2016). Some macroscale 
questions can be addressed with a single source or type of data 
and relatively simple statistics (eg spatial scaling patterns using 
regression in macroecology; Brown and Maurer 1989). Yet many 
broad- and multi-scale research questions require combining 
disparate datasets, especially when the focus is on understanding 
mechanistic processes (Levy et al. 2014; LaRue et al. 2021).

Data integration is an integral component of many investi-
gations in macrosystems ecology. Compared to geographically 
or temporally restricted analyses, it can be challenging to esti-
mate ecological parameters at macroscales using only a single 
data source because of interacting or nonlinear environmental, 
climatic, and biological processes, as well as data limitations. In 
macrosystems ecology, various data sources can provide infor-
mation on components of the study system that operate at dif-
ferent scales (eg Robinson et al. 2018; Itter et al. 2019). In 
estimations of species distributions, for example, opportunistic 
records (eg from iNaturalist or museum collections) can be 
used to delineate the occurrence of individuals across a large 
spatial extent, whereas smaller-scale mechanistic studies can 
provide data on factors influencing density across gradients of 
local variables (Figure 2). Similarly, in biogeochemical mode-
ling, eddy flux, field inventories, and remote-sensing data each 
contain distinct information about potential pathways of car-
bon dioxide (CO2) exchange across local, regional, and even 
continental scales (Keenan et al. 2012).
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In a nutshell:
•	 Understanding ecological processes across spatiotemporal 

scales can be enhanced by using multiple, independent 
data sources in a unified analysis via statistical data in-
tegration methods

•	 Although data integration can improve ecological infer-
ences, challenges can arise during analysis

•	 We review the most common statistical challenges related 
to data integration in macrosystems ecology and discuss 
ways in which they can be overcome

•	 We provide researchers with resources from the literature 
to address issues that may arise during data integration 
and highlight avenues of future research
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Beyond expanding the scale and scope of analysis (Isaac 
et al. 2020), data integration techniques can provide a variety 
of additional inferential benefits. By leveraging information 
from multiple sources, data integration improves the accuracy, 
and often the precision, of parameter estimates, enabling com-
prehensive assessments of processes underlying ecological 
responses to environmental variability (Gotway and Young 
2002; Fletcher et al. 2016; Grace et al. 2016). Integrating inde-
pendent datasets can also account for multiple sources of 
uncertainty and error in parameter estimates (Schaub and 
Abadi 2011; Keenan et al. 2013; Fithian et al. 2015), and allow 
for estimation of parameters for which no explicit data are 
available (ie improving parameter non-identifiability; see 
Panel 1 for definitions of relevant terms). The approach for 
data integration begins with construction of a model that 
describes the ecological processes of interest. Likelihood func-
tions (Panel 1) are used to identify how each data source 
informs parameters in the ecological process model. The indi-
vidual data sources are then linked to one another via parame-
ters that are informed by more than one dataset (Miller et al. 
2019). For example, a model of leaf phenology might combine 
data from ground-based phenocams with satellite imagery, 
where the different data sources inform the same ecological 
process model but have unique sampling errors (Viskari et al. 
2015).

There is growing awareness and adoption of data integra-
tion techniques in macrosystems research, as well as in ecology 
more broadly (Figure 1), but this methodological framework is 
still relatively new. Although several recent papers have synthe-
sized data integration approaches (eg Zipkin and Saunders 
2018; Miller et al. 2019; Isaac et al. 2020), none have focused on 
describing the methodological challenges that ecologists 
encounter when integrating disparate data sources, nor poten-
tial solutions for overcoming those difficulties. To address this, 
we conducted a search of recently published peer-reviewed 
journal articles to identify inferential impediments to data inte-
gration in macrosystems ecology (see WebPanel 1 for search 
criteria). Nearly half (44%) of the articles that presented origi-
nal research integrated two or more datasets, while 20% of all 
articles (ie research, commentaries, reviews) discussed inferen-
tial problems. The most common challenges were (in decreas-
ing order of frequency): (1) mismatches in spatial or temporal 
scale of data sources, (2) differences in the quantity and/or 
information content of data sources, (3) sampling biases, and 
(4) optimization of model development and assessment. An 
additional challenge that we identified – nonstationarity or 
spatiotemporal variation in processes or covariate effects 
(Panel 1) – is often overlooked but is described in detail in 
Rollinson et al. (2021). Although these four challenges can 
occur in analyses that integrate data at any scale, they tend to 
be exacerbated in macrosystems ecology, where the geographic 
scope is large and the data tend to be “big” (Levy et al. 2014).

The use of complex and computationally intensive analyti-
cal approaches is growing in macrosystems ecology, and con-
sequently development of technical skills has been identified 

as a key need for researchers in this field (Farrell et al. 2021). 
With this in mind, we aim to increase awareness of potential 
inferential pitfalls that ecologists may encounter when inte-
grating multiple data sources and present researchers with 
resources that can help them avoid or ameliorate issues as they 
arise. We recognize that logistical constraints, such as the pro-
cessing and/or management of datasets through data harmoni-
zation (a distinct informatics approach for combining similar 
datasets that differ only in format or origin) and computa-
tional limitations, can also hinder macrosystems ecology. 
However, we focus on statistical and modeling challenges of 
data integration because logistical issues have been recognized 
and discussed in greater depth previously (eg Rüegg et al. 2014; 
LaDeau et al. 2017). In the following sections, we review the 
four inferential challenges listed above by providing a general 
description of each problem, discussing how the problem 
manifests in macrosystems ecology, and offering current and 
potential approaches to address and resolve the issue. Although 
these data integration challenges can be interrelated, leading to 
trade-offs in modeling decisions, each are presented inde-
pendently for clarity. We conclude by highlighting key steps 
and resources that can help researchers identify and overcome 
data integration challenges (WebTable 1).

Resolving mismatches in spatial and temporal scales 
of available data sources

A mismatch in the dimensions or resolution of sample units 
(ie grain) can arise when combining multiple data sources 
that have been collected at different spatial and/or temporal 
scales (Nguyen et al. 2014). Mismatches in grain are common 

Figure 1. A search of peer-reviewed publications (see WebPanel 1 for 
search criteria) revealed that the use of data integration in ecological 
research was uncommon from 1990–1999 but increased markedly over 
the subsequent two decades (2000–2019).
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when trying to relate remotely sensed data or geographic 
information system (GIS) data layers (eg data aggregated 
according to political units, such as human census and dis-
ease data) to each other or to field data, which tend to be 
collected at fine spatial resolutions (Figure 3; Nguyen et al. 
2012; Estes et al. 2018). Combining data without accounting 
for scale mismatches (eg regridding a coarse resolution prod-
uct to a fine scale, interpolating point reference data to a 
grid) can result in artificial inflation of the sample sizes of 
one or more data sources, potentially resulting in biased 
inferences or overstated precision (Gotway and Young 2002).

Many individual sources are used to collect 
data with the purpose of informing distinct pro-
cesses or dynamics of a system, often at local 
scales, and therefore provide incomplete informa-
tion to address macrosystems questions. Merging 
data sources that describe different components of 
biological and/or physical processes, portions of 
the geographic range of interest, or slices of a 
longer time series can help address macrosystems 
questions, but the grain and extent of data are 
likely to vary across available sources (Miller et al. 
2019; Schimel et al. 2019). For example, data on 
breeding birds are available throughout North 
America from numerous programs, including the 
North American Breeding Bird Survey (BBS), 
eBird, and other volunteer-led monitoring efforts, 
but observations are reported on different spatial 
scales for each of these programs (eg 0.25-mile 
radius point counts every 0.5 miles along a 25-mile 
permanent transect for BBS, checklist data with 
variable survey area for eBird), and the time series 
available varies considerably among the data 
sources and across geographic areas (Pacifici et al. 
2017; LaSorte et al. 2018).

Although mismatches in spatial and temporal 
scales have only recently been recognized as 
methodological challenges in ecological research, 
they have often been addressed in the statistical 

literature through the use of “change of support” procedures 
(Cressie 1996; Gotway and Young 2002). Change of support is 
the process by which data are either up- or down-scaled to 
achieve a single extent (overall geographic area or time period 
of interest) and grain (Panel 1). In contrast to interpolation 
and regridding approaches commonly used in GIS and similar 
software, change of support models properly account for 
uncertainties associated with changing scales (Cressie 1996). 
While naïve downscaling can artificially inflate sample sizes 
(eg if 100 observations are interpolated to a 1000-point grid, 
the effective sample size should still be 100), change of support 

Figure 2. Schematic diagram illustrating how various data sources (green rectangles) can 
be used to parameterize models of ecological phenomena (ovals; linked with small green 
arrows) within a macrosystems framework. The large colored arrows depict relationships 
between ecological processes within and across scales. Using a population ecology exam-
ple, three interacting processes are highlighted, along with their corresponding data 
sources (within the dashed polygon). Blank ovals are used to illustrate other, unnamed pro-
cesses. Adapted from Heffernan et al. (2014).

Panel 1. Glossary of terms related to data integration

Change of support: a class of techniques used to make inference 
about a variable at a different spatiotemporal extent or grain from that 
at which it was observed.

Information content: the extent to which data reduce uncertainty in 
parameter estimates (eg large volumes of data may have relatively low 
information content if there are strong temporal and/or spatial correla-
tions among observations).

Likelihood: function describing the probability of observing the sample 
data, conditional on given parameter values from assumed probability 
distributions.

Non-identifiability: one or more parameters in a model are not esti-
mable because of insufficient data or an overly complex model structure.

Nonstationarity: data that exhibit trends, cycles, or drift that result in 
non-constant parameters (eg mean, variance, autocorrelation) over time 
and/or space.

Structured data: data that are collected in a design-based framework, 
usually to answer pre-defined research questions.

Unstructured data: data that are collected continuously or opportunis-
tically without a specific objective, typically occurring in higher volumes 
than structured data.
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models preserve information content. For 
example, Itter et al. (2019) used a memory 
function to align water deficiency data (col-
lected monthly) with defoliation and tree 
growth observation data (collected annually) 
to evaluate how tree growth responds to 
stress from water limitations. Methodologi-
cal approaches to accommodate variable 
spatial extents and grain in ecological data 
have often been case-specific rather than 
widely applicable (eg Zipkin et al. 2017; Farr 
et al. 2020). Current work focused on devel-
oping a more general statistical toolbox for 
handling change of support across data types 
and spatiotemporal scales will help account 
for inferential uncertainties and expand data 
integration capabilities within macrosystems 
ecology (Pacifici et al. 2019).

Addressing unbalanced data: uneven 
quantities and information content

In the context of data integration, unbalanced data refers 
to differences in the quantity (eg number of observations 
or data points) or information content (Panel 1; eg infor-
mation-rich data from well-designed studies versus infor-
mation-poor opportunistic data) among two or more data 
sources. If these differences are not accounted for, models 
can produce estimates biased toward abundant data sources 
regardless of their information content. For example, in 
studies of population dynamics, recaptures of marked indi-
viduals can result in precise estimates of species’ survival 
probabilities, whereas cryptic behaviors of breeding individ-
uals may limit data on productivity, potentially biasing 
estimates of reproductive output and ultimately of population 
growth rates (eg Campbell et al. 2018).

The issue of unbalanced data is particularly acute in mac-
rosystems ecology, where the large scale of interest frequently 
leads to uneven quantities of data across space and time or 
among sources and/or components in ecological models (Levy 
et al. 2014). Macrosystems research frequently relies on 
unstructured data sources (Panel 1; eg opportunistic “inciden-
tal sightings” represented in museum collections or reported on 
iNaturalist) and on automated data sensors (eg eddy covari-
ance, stream gauges, cameras, soundscapes, sap flux, aquatic 
buoys, radio telemetry). Compared to structured data (Panel 1; 
that is, data collected using standardized methods with the goal 
of addressing a specific research question), unstructured data 
tend to be plentiful even though they are typically of lower 
inferential value, providing less information per observation 
for parameter estimation. Similarly, automated sensors can 
produce a wealth of information over relatively short time peri-
ods and overwhelm field data collected manually (Williams 
et al. 2009; Figure 4). As a result, models that use a combination 

of sensor data and field data can produce model fits dominated 
by high-volume sensor data (Richardson et al. 2010).

Although data integration can expand the spatiotemporal 
scope of research, differences in data quantity and information 
content may affect the structure and complexity of the ecolog-
ical process model (eg by assuming that mechanistic processes 
or covariate relationships are constant across space). Conduct-
ing preliminary analyses of independent data sources prior to 
integration can help identify geographic locations, temporal 
periods, and/or mechanistic processes in which unbalanced 
data could lead to biases in inferences (Kéry and Schaub 2011; 
Kuikka et al. 2014). Common approaches to address issues of 
unbalanced data, such as subsampling or down-weighting the 
larger dataset, are typically ad hoc and may lead to different 
conclusions based on subjective choices during model devel-
opment (Maunder and Piner 2017). However, recently devel-
oped methods to weight public science data according to 
observer expertise (and therefore to selectively down-weight 
available data) have led to improved model fit and predictive 
performance (Johnston et al. 2018). More objective approaches 
focus on modeling factors that inflate the information content 
of high-volume data, such as autocorrelation in time and 
space, as well as systematic observation errors (Dietze 2017). 
Formally modeling biases within statistical likelihoods also 
appears to be a promising approach (Fer et al. 2018) and is an 
active area of research.

Accounting for sampling biases in one or more data 
source(s)

Data at any scale reflect the methods used to select sample 
units (eg site-selection bias) and collect individual measure-
ments (eg observation error). Site-selection biases occur when 
sample units are not selected randomly from pre-defined strata 
or when selected units fail to adequately represent the 

Figure 3. Studies in macrosystems ecology often integrate multiple data sources collected at 
different spatiotemporal resolutions. Satellites, like (a) the US National Aeronautics and Space 
Administration’s Terra satellite, usually measure the Earth’s surface and atmospheric proper-
ties at large spatial resolutions. Field data, such as that originating from (b) a weather data 
buoy, are collected at localized spatial resolutions. Inferences from a model integrating multi-
ple data types can be more informative than inferences based on analyses of each data source 
separately, yet successful integration requires approaches to reconcile the different sample 
unit dimensions within each data source.
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geographic area of interest. Observation biases occur when 
data are collected or recorded with error (eg imperfect detec-
tion by observers or instrumental noise in sensors). Although 
these sampling issues can materialize in analyses of a single 
dataset, they are likely to be more problematic in integrated 
analyses because biases in individual datasets can result in 
cumulative errors and uncertainties. Failure to account for 
sampling biases or errors can yield estimates that are overly 
precise and potentially misleading (Albert et al. 2010).

Although observation errors are likely to occur at similar 
rates across data collected at both local and broad scales, sam-
pling biases resulting from inadequate or nonrandom site-selec-
tion may be more prevalent in data integration analyses at 
macrosystem scales. Limited resources and logistical constraints 
often prevent implementation of probabilistic sampling designs 
(eg stratified random sampling) at regional to continental 
scales. For example, macrosystems ecology increasingly uses 
data from volunteer-based (public science) monitoring projects 
to describe ecological phenomena at large spatial scales (Sulli-
van et al. 2014; LaSorte et al. 2018; Saunders et al. 2019b). Such 
programs can provide vast amounts of data to inform species 
distributions, relative abundance, and phenology, but collection 
efforts are often focused near urban areas, roads, or other loca-
tions with high human population densities (Figure 5; Bird et al. 
2014). Similarly, the recent development of regional- and conti-
nental-scale research networks has facilitated the growth of 
macrosystems ecology through the collection of detailed and 
systematic data that can be used to inform models of geophysi-
cal and biological processes at large spatial scales. Yet models 
that incorporate these data need to account for nonrandom 
sampling, given that locations often reflect both the prioritiza-
tion of particular ecoregions and logistical constraints (Keller 
et al. 2008). Within multi-scaled research, bias introduced at 
one scale via nonrandom sampling may be unintentionally 
propagated to inferences at other scales (Gelfand et al. 2012).

A wide array of strategies have been proposed to account 
for sampling biases, depending on the amount and type of data 

available, the source of bias (selection of 
sample units versus observation biases), and 
the extent or severity of the problem. For 
instance, when sample units are selected 
preferentially based on environmental fea-
tures or other variables that correlate with 
the process of interest, biases can be reduced 
by including model components to describe 
the site-selection process (Diggle et al. 2010; 
Conn et al. 2017). Incorporation of spatially 
correlated random effects can also improve 
inferences (Hefley et al. 2017). Similarly, a 
state-space (ie hierarchical) framework that 
models the biological or physical process of 
interest separate from the processes used to 
collect data (eg de Valpine and Hilborn 
2005) can account for observation biases 
and differences in sampling efforts among 

data sources, and/or be used to account for specific types of 
observation error mechanistically (eg Schaub and Abadi 
2011). Finally, explorations of available data, independently 
and together, can help determine how to amend the design of 
ongoing data collection efforts to limit biases in model infer-
ences or identify where and when to implement probabilistic 
sampling to collect auxiliary data.

Optimizing model development and assessment when 
incorporating multiple data sources

Balancing the complexity and realism of models with the 
data necessary to parameterize such models is an ongoing 
challenge in ecological research. Integrating data sources 
that are collected on different components of a system (eg 
various biological or physical processes, subsets of a geo-
graphic range) allows researchers to better understand spatial 
or temporal variation in ecological processes or mechanisms 
that underlie ecological patterns. However, combining dis-
parate data sources to create increasingly complex models 
may not always result in improved inferences if the necessary 
assumptions are untenable or too restrictive, data on one 
or more aspects of the system are severely limited, or the 
model cannot be easily understood or applied to other eco-
logical systems. Assessing the quality of inferences, or how 
well complex models fit both individual data sources and 
a suite of integrated data sources, is an active area of research 
(Besbeas and Morgan 2014; Carvalho et al. 2017).

Within macrosystems ecology, model fit may be hindered 
by nonstationarity (Rollinson et al. 2021) and cross-scale inter-
actions (Figure 2), resulting in rejection of models that fit the 
data well for some (but not all) geographic locations or time 
periods or conversely, in acceptance of models with mediocre 
overall fit that fail to characterize processes in any region or 
time period well (Foody 2004). Moreover, standard approaches 
to validate model fit may not be feasible for integrated mac-
rosystems analyses because of data limitations and/or logistical 

Figure 4. Merging information sources with varying quantities of data, such as those collected 
from automated and field-based approaches, is common in macrosystems ecology. Automated 
data like (a) flux tower measurements are collected nearly continuously in vast quantities, 
whereas (b) field-sampled data tend to be collected less frequently, resulting in sample sizes 
an order of magnitude smaller. A model integrating various data sources can provide a more 
complete picture of ecosystem processes as compared to independent analyses, yet success-
ful integration requires that inferences be based on the information content of the data sources 
and not solely on the quantity of observations.
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constraints. For example, cross-validation methods require 
that some data (eg individual observations, random or geo-
graphically selected blocks of observations) be withheld from 
analyses to evaluate model fit (Hooten and Hobbs 2015; Rob-
erts et al. 2017). In a macrosystems model that uses multiple 
data sources, however, it may not be clear how to select obser-
vations among disparate data sources that inform multiple 
ecological parameters.

In addition to challenges in assessing model fit, traditional 
model and variable selection approaches (eg null hypothesis 
testing, information–theoretic methods) may be insufficient 
for integrated models (Besbeas and Morgan 2014), particularly 
if the focus lies in evaluating the importance of various pro-
cesses and drivers across multiple scales (Grueber et al. 2011; 
Levy et al. 2014). Model selection approaches often involve 
comparing models that include or exclude a given variable 
under the assumption that their effects on the response varia-
ble are independent. Within macrosystems ecology, however, 
the effects of one variable may be influenced by or co-vary 
with factors operating at different scales (eg Lawler and 
Edwards 2006). Therefore, it may not be possible to isolate the 
effects of a particular variable or “remove” one variable from a 
model without disregarding important cross-scale interactions 
that influence the broad-scale processes and patterns research-
ers seek to explain. Correlation among predictor variables that 
vary in scale can result in the selection of a model that includes 

spurious variables or excludes important predictors (Grueber 
et al. 2011).

Developing appropriate models using multiple data sources 
is an iterative process that generally begins by building compo-
nents of the ecological process model separately to examine 
convergence and model fit (Kuikka et al. 2014; Ketz et al. 
2018). Simulated datasets, in conjunction with goodness-of-fit 
discrepancy measures, can be used to compare estimated 
parameter values with true data values to examine whether 
model components systematically over- or under-predict 
quantities of interest (Besbeas and Morgan 2014; Zipkin and 
Saunders 2018). New approaches, such as multi-objective opti-
mization (Branke et al. 2008), in which model selection is 
based on multiple criteria (Williams et al. 2019), may help 
identify appropriate models for complex multi-scale systems. 
Model selection choices should be based on data availability as 
well as objectives, such as identifying factors that have the larg-
est effect on ecological processes of interest or minimizing 
uncertainty of model predictions.

Conclusions and future directions

Data integration offers ecologists an opportunity to explore 
complex, multi-scaled phenomena by combining available 
information within a single analytical framework. Integrated 
models improve estimation of ecological processes and 

Figure 5. Macrosystems data frequently come from sources with nonrandom sampling designs. For example, (a) survey locations used for butterfly moni-
toring by volunteers with the North American Butterfly Association (red circles) and state organizations (blue circles) are clustered near urban areas (shown 
in gray for Ohio). Similarly, (b) opportunistic sightings of individual species – such as the eastern tailed-blue butterfly (Cupido comyntas), shown here on a 
gravel drive – often occur near roads and urban centers. A model that integrates these data sources could produce dynamic estimates of species’ distri-
butions, yet successful integration requires accounting for incomplete and nonrandom sampling to ensure that estimates are not biased.
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patterns because they expand the amount and scope of data 
available while explicitly accounting for multiple sources of 
error and uncertainty. The use of multiple, independent data 
sources can also reveal biases in parameter estimates that 
are hidden in analyses based on a single dataset, thereby 
improving the accuracy of inferences used to inform con-
servation and management efforts (Saunders et al. 2019a). 
In addition, ecological forecasts benefit from data integration 
as accurate predictions of future ecosystem states and pro-
cesses require the appropriate propagation of uncertainty 
in parameter estimates, initial conditions, and future system 
states (Dietze et al. 2018). However, issues remain in the 
development, analysis, and interpretation of data integration 
models, particularly within macrosystems ecology, given that 
such analytical approaches are relatively new and often 
incompatible with standard software packages. We highlight 
statistical approaches from the literature to address common 
integration problems (WebTable 1). As integration challenges 
are often interdependent, approaches used to address one 
issue can affect the options available to address other issues. 
In many situations, more than one approach could reason-
ably be used to address integration issues, the most appro-
priate of which will depend on the specific data available, 
the complete set of challenges, and the ecological system 
and question(s) of interest.

Continued adoption and adaptation of formal approaches 
from the statistical literature can expand the utility of data 
integration analyses within ecological systems (eg Pacifici et al. 
2019), and future research is likely to produce additional 
methods to resolve integration challenges. In addition to the 
techniques discussed in relation to the individual challenges 
(WebTable 1), we recommend three general considerations to 
help overcome analytical obstacles when integrating data at 
macroscales. First, it is often useful to begin by assessing the 
scope, grain, information content, and quantity of individual 
data sources to evaluate the potential structure and feasibility 
of an ecological model. This will identify the extent to which 
data sources can individually inform model estimates and help 
determine reasonable model complexity given available data. 
Second, simulating data, as well as developing and evaluating 
model components sequentially, can aid in determining 
whether inferential challenges are likely to arise prior to full 
model implementation. Data integration is often an iterative 
process, where new challenges arise as data sources are added 
or model structures are altered. Integrating data sources in 
steps using “perfect” simulated data can help pinpoint poten-
tial problems and solutions early on and determine how real 
datasets differ from simulated data. Finally, including random 
effects in one or more components of an integrated model can 
often ameliorate many of the inferential challenges discussed 
here. Random effects can be used to account for differences in 
the spatial and temporal extent of multiple data sources, incon-
sistencies in sampling effort and techniques, and variance in 
ecological processes not explained by available covariates (eg 
Pacifici et al. 2017).

Macrosystems ecology is emerging as a valuable and 
increasingly relevant field (McCallen et al. 2019) as society 
faces multifaceted, interconnected, and cross-scaled pressures 
from rapid and unprecedented global change (Dodds et al. 
2021). Moreover, data integration analyses are primed to play 
an important role within macrosystems ecology because of the 
inherent need to combine data sources to obtain inferences at 
regional to continental scales, and the sheer volume of data 
that is available through automated and large-scale collection 
programs (LaDeau et al. 2017). However, determining how 
multiple, disparate sources of data can be used to address ques-
tions at macrosystem scales across spatial and temporal heter-
ogeneity can be complex. Despite these challenges, data 
integration techniques have expanded the breadth of research 
focused on patterns and mechanistic processes operating at 
broad spatiotemporal scales (Isaac et al. 2020), and we expect 
that the continued, rapid development of data integration tech-
niques will be crucial to advancing the growing field of mac-
rosystems ecology.
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Improved survival for an albino?

Dominated mostly by small scattered trees and a patchy can- 
  opy, savannas offer few places for bats to shelter. However, 

within Brazil’s savanna ecoregion known as the Cerrado, riparian 
forests and seasonal dry forests provide an exception. Most bat 
species that naturally have white fur are associated with the habit of 
roosting under tree leaves; incidentally, the bottoms of most tree 
leaves are typically lighter in color than their tops. The bat pictured 
here was captured in a gallery forest near the Águas Emendadas 
Ecological Station (Planaltina, Brazil) in 2007. To the best of our 
knowledge, this is the first reported case of albinism not only for 
Dermanura cinerea, a frugivorous bat species normally distin-
guished by gray fur, but also among other bats in the Brazilian 
savanna. We believe that its white fur might better match the bottom 

color of the tree leaves in these forests, thereby offering greater 
camouflage and potentially improving its chances of survival.
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